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Flows transporting material between nearby moving surfaces are ubiquitous in 
machinery of all scales and with a variety of geometries. Here a general derivation 
is given of the effective two-dimensional mixing process in a narrow gap for a solute 
or miscible fluids. Explicit formulae are given for the shear dispersion tensor in 
laminar and turbulent (logarithmic velocity profile) flows. It is shown that if 
improved mixing is required, then the optimum direction for additional boundary 
motion or stress is a t  right angles to the primary flow direction. 

1. Introduction 
In the atmosphere the wind direction varies with height above the ground. This 

profoundly affects the travel path and rate of spread of pollution in the atmosphere, 
particularly for ground-level releases. It is often appropriate to regard the flow as 
being horizontally uniform. The method of moments (Aris 1956) can then be used to 
calculate the concentration distribution (Saffman 1962 ; Smith 1965 ; Csanady 1969 ; 
Taylor 1982). At large distances downstream (of order 100 km), when the pollution 
has become uniform across the well-mixed layer (typical depth 1 km), the dispersion 
process becomes two-dimensional, 

In  the oceans the velocity direction can likewise vary with depth, either because 
of the Earth’s rotation (the Ekman spiral) or because of non-alignment between wind 
and tidal forcing. For coastal waters, vertical mixing takes place over comparatively 
short distances (of order 1 km). Fischer (1978) gives a direct derivation of the two- 
dimensional dispersion process for a skewed shear flow. He showed that there is a 
tensor shear dispersion coefficient involving the two horizontal velocity components. 
The particular problem of concern t,o Fischer (1978) was pollution transport and 
dilution in waters over a flat part of the Atlantic continent shelf of the United States. 
This led him to restrict his attention to uniform Cartesian geometry and to  use a site- 
specific empirical velocity profile. Smith (1979) evaluated the shear dispersion tensor 
for buoyant contaminants, while Hamrick (1986) evaluated the tidally averaged 
shear dispersion tensor. 

Narrow-gap skewed shear flows carrying material can also occur in machinery of 
all sizes, from oil lubricating bearings as small as 1 mm, to water slurries a t  the face 
and around the circumference of tunnel boring machines of 10 m diameter. Unlike 
the geophysical applications, the gap widths vary markedly, and the geometries are 
rarely Cartesian. The first objective of the present paper is to  give a derivation of the 
two-dimensional shear dispersion equation that is free from geometrical restrictions. 
The second objective is to evaluate the shear dispersion tensor for laminar and for 
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turbulent (logarithmic velocity profile) flows, i.e. tensor counterparts to the scalar 
shear dispersion coefficients derived by Taylor (1953) and by Elder (1959). 

A useful general principle revealed by the analysis is that  to encourage good 
mixing there should be motion perpendicular to the main flow direction. For 
example: it is indeed appropriate that  the axial transport of slurry back along the 
circumference of a tunnel boring machine should be accompanied by rotation of the 
outer surface. 

2. Narrow-gap equations for density and concentration 
As sketched in figure 1 ,  the normal distance from a reference surface S (e.g. a 

cylinder of radius a )  is written n. The three-dimensional gradient operator is 
approximated 

where V, is the two-dimensional operator on the reference surface. It is by 
suppressing the n-dependence of V, that the following equations are approximate 
not exact. For example, in cylindrical polar coordinates we approximate 

The three-dimensional velocity field is decomposed : 

(US, W ) ?  (2.3) 

where us is a vector in the reference surface, and w is the much smaller velocity across 
the narrow gap. 

The miscible fluids involved in shear-augmented mixing need not have the same 
density, So, we shall allow the density p to vary. The mass conservation equation is 

atp+Vs. (pus)+~, (pw)  = 0. (2.4) 

We characterize the mixing process in terms of the mass fraction c of the solute or 
the intruding fluid. The density, diffusivity and viscosity would typically be 
functions of c.  The advection-diffusion equation for c takes the form 

pa, c +pus. v, c+pw a, c = v, . (pKs. v, c )  + an(pKa, c ) .  (2.5) 

For simplicity it has been assumed that the outwards normal is one of the principal 
directions of the diffusivity tensor. The magnitude of this normal diffusivity is 
denoted by the scalar K .  The other tensor components within the surface are denoted 
K,. In  a laminar flow of a Newtonian fluid us would be isotropic with scalar 
diffusivity K .  For a turbulent flow equation (2.5) is merely an empirical model, with 
the advantage of established parameterizations for the eddy diffusivities, K ,  K,. The 
narrowness of the gap means that the right-hand side of (2.5) is dominated by the 
n-derivatives. 

We denote the outer interface by 

n = N(+)(x, t ) ,  (2.6) 

where x denotes the two-dimensional position on the reference surface S. The 
condition for zero mass flux across the boundary is 

w = a,N'+)+u,.v,N+) on n =N'+). (2.7) 
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FIQURE 1. Definition sketch showing the reference surface S ,  the normal distance n, and the 
boundaries n = N-), n = N(+) separated by the narrow-gap width h. 

For the concentration we need to allow for the diffusive flux: 

wc--Ica,c = ~ ~ , N ( + ) + ( u ~ c - - ~ . V ~ ~ ) . V ~ N ( + )  on N = N + ) .  (2.8) 

These equations can be derived from the mass or species budget in a coin-shaped 
control volume with the upper surface moving with the impermeable interface N(+).  
The narrowness of the gap and the smallness of w means that the n-derivative is very 
much the dominant term in (2.8). On the inner boundary n = N(-) it suffices that we 
replace the (+) superscripts by (-). 

3. Averaging across the gap 
Since the gap is narrow, the concentration will rapidly become nearly uniform 

across the gap. The subsequent mixing process will be two-dimensional. Following 
Fischer (1978, equation 3) we use averaging across the gap to derive two-dimensional 
counterparts to (2.3), (2.4). 

We denote the gap width by 
h = ”+) -N( - ) .  

Average values across the gap are denoted 11.. . II 

The natural two-dimensional flow properties involve a mass-weighting : 

(3.3a, b, c )  
1 1 1 u - - IIpusll, c = - IIPCIl, Ks = - IlPKsII. 

- IlPll II P II 
With these definitions there are striking similarities between (2.4), (2.5) and their 
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In  effect, the integration across the gap and the use of the boundary conditions (2.7), 
(2.8) replaces the c?n terms in (2.4), (2.5) by V, terms. It is only in the final two terms 
in (3.5) that there is any dependence upon the concentration profile across the gap. 

These same equations (3.4), (3.5) can be derived even if the gap is wide. However, 
depending upon the geometry of the reference surface, S ,  interpretation of h, 11.. . / I  
and V, would have to be modified to accommodate the n-dependence. For example, 
if S is a cylinder of radius a ,  then we would replace the notation (3.1), (3.2) by 

( 3 . 6 ~ )  

(3.6b) 

So, for (3.4), (3.5) the narrow-gap approximation can be regarded as simplifying the 
evaluation of h and 1 1 . .  . / I .  

For later use we note that, in the narrow-gap limit, an integration by parts with 
respect to n yields the identity 

4. Concentration profile across the narrow gap 
The profound contribution of G. I .  Taylor (1953) in his analysis of unidirectional 

flows, was to recognize the importance of the p(U,-u,)(C-c) term in (3.5). 
Although it is small relative to the left-hand-side advection term, the physical 
character is diffusive not advective. So, if the diffusion is weak (PBclet numbers in 
excess of unity based upon the gap width), the shear contribution can be large 
relative to K,. Hence, it is necessary to seek a higher approximation to the 
concentration profile across the flow : 

c = C+c’ with c’ 4 C and llpc’II = 0. (4.1) 

By contrast, when c’ is small it is justifiable to neglect the ~ ( K , - K ~ ) V , ( C - C )  term 
in (3.5), because it does not account for any physical effects not already represented 
by larger terms. 

If we use (3.5) to eliminate a,C, then the exact equation for cf can be written 

pa,c~+pu,.v,c~+pwa,C~-v,(p~,~.v,c~)-an(pKa,c~) 

++v,- (hllP( us - us) C I I I  1 + v,. (hllP(K, -K,).V, crII) 
hllpll 

(4.2) 
P = p( Us - US) * V, C + V s .  (PIC,. Vs  C )  --V,. ( IIPIIK,~. Vs  C). 
llpll 

The density and diffusivities would be functions of the local concentration C + c’. 
Following Taylor (1953) we make drastic simplifications to both sides of this 

equation. On the left-hand side of (4.2) the first three terms comprise the advective 
rate of change, which we shall assume is small compared with the timescale for 
mixing across the narrow gap. The next term involves gradients V, along and around 
the gap, which are small relative to gradients a, across the gap. Similarly, the 
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(Us  -us) c‘ and K, - K, terms are small by virtue of the V, gradients. On the right- 
hand side we ignore the K, and K, terms on the basis that longitudinal advection 
dominates longitudinal diffusion (i.e. it is when diffusion is weak that the shear effect 
needs to be calculated). The much simplified equation for c‘ is 

(4.3) 

A formal mathematical derivation in axes moving with the two-dimensional flow us 
(Smith 1979; Hamrick 1986) would require that the diffusivities K ,  K,, K, are smaller 
than lUsla but larger than IUslh2/a, (i.e. small diffusion but not so small that there 
is not mixing across t,he narrow gap). The approximate boundary conditions are 

-an(pK an c/ )  = p( us -us). v, C. 

A first integral is 

5. Two-dimensional dispersion equation 
In view of the identity (3.7), and the approximate solution (4.5) for and,  we are 

now in a position to  evaluate the shear terms in (3.5). The diffusive character is a 
consequence of the facts that, the shear term is in divergence form and a n d  is 
proportional to V, C. We define the tensor coefficients 

with 
f n  

I ,  = J p( Us - us) dn’. 
hl-) 

(5.1 a) 

(5.1 b)  

The T superscript indicates the transpose of a vector (from row to column form). 
These double integrals ( 5 . 1 ~ )  are a slight simplification upon the triple integrals 
derived by Fischer (1978, equation (8), and avoid the summation over eigenmodes 
used by Hamrick (1986, equation (63)). 

With these definitions the shear-dispersion equation (3.5) for C(x, t ) ,  with the last 
term neglected, can be approximated : 

hllplla, c + hll PI1 u,.v, c- v, - ( 4  PI1 [K, + ~ , I . V ,  C) = 0. (5.2) 

In the particular case of Cartesian geometry with uniformity with respect to both x 
and y, this agrees with the two-dimensional equation derived by Fischer (1978, 
equation (9)). The tensor variance grows at the rate 2(K, + D,), in agreement with 
the method of moments (Saffman 1962). 

The importance of this Taylor (1953)-type of analysis, is that the shear dispersion 
coefficients D, can be comparable with or even exceed the conventional diffusivities 
K,. Also, the values of the components of D, can be evaluated via the explicit 
formulae (5 . la ,  b ) .  Formally, D, and K, are of comparable magnitude if the 
diffusivities K ,  K, are of order IU,lh, (i.e. PBclet numbers of order unity based upon 
the gap width). 
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6. Narrow-gap flow between moving boundaries 
To evaluate the shear-dispersion tensor D,, we need to know the velocity profiles 

us(x,  n, t ) .  Fischer (1978, figure 1) uses an empirical step profile for the transverse 
velocity and a linear profile for the longitudinal velocity while Hamrick (1986> 
equation (58)) solves for an eigenvector representation. Here we undertake the task 
of calculating the velocity profiles across the narrow gap between differentially 
moving boundaries. 

We decompose the vertical gravitational acceleration vector (or other body force) 
into surface and normal components 

(gs, Sn). (6.1) 

Since the gap is narrow, we shall neglect any n-dependence of these components. 
Across the gap, we assume that the pressure p is hydrostatic: 

anP-Pgn = 0. (6.2) 

In  particular, if the density is a function of the concentration c, then the 
approximation c‘ 6 C permits us to regard p as being close to  the average llpll. So, we 
approximate the pressure distribution : 

P = IlPll + IIPllsn(n- llnll). (6.3) 

Since the gap is narrow, the llpll-term dominates. 

momentum equations along and around the narrow gap: 
By analogy with the cross-stream diffusion equation (4.3), we approximate the 

an(PanU,) = V s l l ~ l l -  llpllgs, (6.4) 

where p is the viscosity of the Newtonian fluid mixture. Thus, any departure from 
hydrostatic balance gives rise to flow, with effectively immediate adjustment of 
velocity profile across the narrow gap. The advective transport of momentum can be 
neglected provided that p is larger than p( U,(h2/a (Reynolds’ number based on the 
gap width of less than alh). At the boundaries the tangential velocity matches to the 
motion of the solid boundaries : 

us = u(+) on n = N+), ( 6 . 5 ~ )  

us = u(-) on n = N-). (6.56) 

In geophysical flows i t  would be necessary to include Coriolis terms in the momentum 
equation (6.4). 

It is convenient to decompose the velocity field us into those contributions 
associated with the bulk flow Us and with the boundary motions u(+), u(-) : 

us = U,f‘”( n) + u(+)f(+) (n) + u(-)f(-) (n) . (6.6) 

In  particular, for a laminar flow with constant p, we have (see figure 2) 

f(’) = 66(1-[), f(+) = -2E;+3t2, (6.7a, b)  

with (6.7c, d )  

For turbulent flows the range of sizes of the eddies involved in the transport across 
the gap of momentum (or concentration) increases away from the boundaries. This 
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-0.5 0 0.5 1 .O 1.5 
FIGURE 2. Profile functions f(o),f(-),f(+) associated respectively with the bulk flow, inner and 

outer boundary motion for a laminar flow in a narrow gap. 

0 0.5 1 .o 

0 0.5 1 .o 
FIQURE 3. Profile functions f(’),j(-),f(+) associated respectively with the bulk flow, inner and 
outer boundary motion for a turbulent flow in a narrow gap with fractional roughness heights 
&) = 6:) = 0.005. 

can be modelled by treating the turbulence as if it were merely a complicated sort of 
laminar flow with a parabolic viscosity 

lu = kllPll~~*(f;+f;L-)) (1-f;+f;i+% (6.8) 

where k is von Krirmtin’s constant, u* is the friction velocity and the fractional 
roughness heights ti-), f;:) are exceedingly small (Elder 1959). The three velocity 
functions are all logarithmic (see figure 3) : 

( 6 . 9 ~ )  
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where contributions of order <!,-), [g) have been neglected. Sometimes the logarithmic 
velocity profile is used to characterize this simple model for turbulence. 

The stress vectors z(-),z(+) on the inner and outer surfaces are given by 

[ 1 - a(+) -a(-)] z(-) = p&, * s  ( u - *(-) + a(+)(*(-) - u(+) ) ) ,  

[ 1 - &(+) - a(-)] T(+) = a(+)&* ( us - u(+) + a(-) (*(+) - * (-) )). 

(6.lOa) 

( 6 . l O b )  

By definition, the friction velocity u* is related to the stress 

*; = +)2 + ++)2 (6.1 1) 

So, even with this simplest of turbulence models the turbulence is coupled to the flow. 
The representation (6.6) reduces the fluid dynamical problem from three to two 

spatial dimensions. For the laminar and for the turbulent flows, the departures from 
hydrostatic balance are given by the respective formulae 

- 
VsllPll- llpllgs = 7 12~(cT,-~(u‘+’+u‘-’)), ( 6 . 1 2 ~ )  

7. Shear dispersion tensor 
For laminar flow with constant, viscosity p and diffusivity K, it  is now elementary 

to evaluate t,he shear dispersion tensor Ds as given by (5. la,  b ) :  

+ ~ U ~ ) ~ U L + ) + ~ ~ ~ - ) ~ U ~ - ) - ~ ( U ~ ) ~ U ~ - ) + U L - ) ~ ~ ~ ) ) } .  (7 .1)  

Thus, the bulk velocity and the motion of the boundaries all contribute to the shear 
dispersion. The positive-definite character of the tensor D, is highlighted in the 
representation 

h2 (+)- (-) T (+)- (-) 
h, 

D, = - (us - ~ ( U Y )  +&) s 1) T ( u s -I(u(+) 2 s +a(-)  s ) )+=(us  us ) (as us 1- 210K 
(7.2) 

The tensor products of the vectors give rise to the symmetric tensor form for D,. The 
two terms correspond to Poiseuille flow (Bugliarello & Jackson 1964, Appendix 11, 
equation (4.5)) and to plane Couette flow (Saffman 1962, equation (17)). 

For the turbulent (logarithmic velocity profile) case we invoke Reynolds’ analogy 
and represent K : 

K = - = k  u*h([+[~- , ) ( l -~+[( ,+) ) .  (7.3) 
IlPll 

If we neglect contributions of order [!,-), [c), then we need to evaluate the two weakly 
singular integrals (Elder 1959, (14); Gradshteyn & Ryzhik 1965, (4.221.1)) : 

J:in[ln(l-[)d[= 2-in2 =0.35506. 

(7.4a) 

(7.4b) 
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The full expression for the shear dispersion tensor is 

When one of the boundaries is unstressed, we recover the result derived by Elder 
(1959) for the longitudinal shear dispersion coefficient. The positive-definite character 
of D, can be seen in the representation 

h 
k3u3, 

D, = i(0.404 1 1  - 2 + inz) - (7(-) + z ( + ) ) ~  (7(-) + 7")) 

+ i(0.404 1 1 + 2 - in.") (7(-) - z ( + ) ) ~  (7(-) - 7")). (7.6) 

The factor of 15.5 disparity in the coefficients shows that any mismatch in the stress 
vectors 7(-),  7(+) greatly enhances the shear dispersion. 

The laminar and turbulent flows exhibit different scalings with gap width h and 
I - -  

bulk velocity Us : 
D = O ( F )  and D = O(hlU,I). (7.7a, b )  

If the changes in gap width are in the main flow direction, then mass conservation 
(3 .4)  leads to hlU,l remaining constant. So the scalings (7.7a, b )  imply that the shear 
dispersion tensor will likewise remain constant even if there are substantial 
variations in gap width. Conversely, if the changes in gap width are orthogonal to the 
main flow direction (as in the example studied in $59, lo), then IU,l will be smallest 
where h is smallest. So, there will be exaggerated changes in shear dispersion 
coefficient in different parts of the flow field, particularly in the laminar case. 

8. Principal values and directions 
The formulae (7 .2) ,  (7 .6)  for the shear dispersion tensor D, take the general form 

D, = aiTi+pjTj, (8.1) 

where a,  ,8 are positive scalars and i , j  are unit vectors. We denote the angle between 
these vectors as $ (see figure 4). For laminar flows i is the direction of the plane 
Poiseuille flow and j is the direction of the Couette flow. For turbulent flows i is the 
direction of the sum of stresses and j the direction of the difference between the 
boundary stresses. 

Unless i and j are orthogonal, the representation (8.1) is not in principal axes form. 
We seek the angle q5 between a principal axis and the i-direction. In component form, 
along and perpendicular to i ,  the eigenvector equation is 

where h is the shear dispersion coefficient (eigenvalue) in the principal direction q5. 
The major (larger) and minor (smaller) values for h are 

A = +(a + p) ;[(a + - 4ap sin2 $$. (8.3) 

The major direction is given by 
2g sin $ cos $ 

a + p- 2p sin2 $ ' 
with 9 = 9 

1 + (1 +gp' tan# = (8.4a, b) 

with the minor direction a t  right angles to the major direction. 
8 FLAI 214 
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\ c -3, 

' ,  

>' 

FIQURE 4. Definition sketch for the angle $ between the directions iJ and for the angle q5 of 
the major axis for shear dispersion. 

In particular, when ,9 is much smaller than a, we have 

(8.5a, b )  

tan$ =-sin$cos$ P ... ( 8 . 5 ~ )  

A, = a+,9cos2$+-cos2$sin2$+ B ... , A- = Bsin2$ 
a 

a 

Hence the major shear dispersion coefficient is slightly increased from a, unless j is 
perpendicular to i .  The minor shear dispersion coefficient is critically dependent upon 
the angle $ between the directions i and j .  The largest value occurs when j is 
perpendicular to i. The major direction is slightly rotated from the i-direction 
towards the j-direction (unless these vectors i ,  j are parallel or perpendicular). 

A physical interpretation of the dispersion ellipse, as shown in figure 4, is as the 
shape of a spot of dye a short time after discharge when shear dispersion D, greatly 
dominates K,. The size of the dye cloud would scale as (2 t ) i ,  until such times as it 
becomes large enough to experience any non-uniformities. The dye concentration 
varies inversely as the area of the dispersion ellipse. 

In many circumstances it is desirable to achieve good mixing within the narrow 
gap, e.g. to avoid possible accumulation of debris. So, it would be advantageous to 
make the minor dispersion coefficient (8.5b) as large as possible. For a given (small) 
magnitude of B, this is achieved when the (secondary) direction j is perpendicular to 
the (primary) direction i. When the plane Poiseuille flow dominates, the Couette flow 
should be directed orthogonally. When, the stresses r ( - ) ,  7(+) are nearly equal, any 
difference in stress should be at right angles. So, in either the laminar or turbulent 
cases, it is best that any small boundary motions be orthogonal to the main flow 
direction. 
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9. Laminar flow around and along a journal bearing 
To illustrate the application of the above general theory, we consider the steady 

situation where an imposed volume flow rate of lubricant is pumped along the non- 
uniform gap between a rotating cylindrical axle and a closely fitting stationary shaft. 
The same type of flow also arises in the boring of tunnels and in the drilling or lining 
of oil wells. We approximate the gap width by 

h(8)  = H(l-€cos8), (9.1) 

where H is the nominal clearance and EH the displacement between two centres (see 
figure 5 ) .  The volume flow rate of lubricant is specified: 

2x: V a H ,  (9.2) 

where a is the axle radius and 
The bulk velocity components around and along the axle are denoted V,(8), W,(8). 

If we ignore density variations (and subtract the hydrostatic pressure), then the 
laminar momentum equation ( 6 . 1 2 ~ )  yields the two component equations 

the nominal lubricant velocity along the axle. 

(9.3a) 

(9.3b) 

where S2 is the angular velocity of the axle rotation. For constant viscosity p, it 
follows that the longitudinal velocity varies as the square of the gap width: 

-( 1 - € cos 8 ) 2  

1 +g w, = w (9.4) 

Figure 6 shows the relative change in WJ8) for E = a, $,a. Even for small fractional 
offset, the longitudinal flow tends to be confined to the region of greatest gap width. 

The mass conservation equation (3.4) implies that the circulation 

is independent of 8. The periodicity of llpll on going around the axle, enables us to 
evaluate the circulation and hence to solve for V,(8): 

Qa( 1 - €2) 

2( 1 - 6 cos 8) (1 + $2) . v, = 

When there is no offset ( E  = 0) ,  the bulk velocity V, around the axle is half the 
velocity aS2 of the axle. Figure 7 shows the relative change in Vs(8) for increasing 
E = a, $, i. Although the mean velocity reduces with E ,  the peak velocity exhibits a 
slight increase. 

The formula (7.2) for the shear dispersion tensor D, involves the Poiseuille and 
Couette flow vectors 
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FIGURE 5. A journal bearing with non-uniform clearance. 

FIGURE 

Thus in component form, we can evaluate the shear dispersion tensor: 

( 9 . 8 ~ )  

(9.8b) 
H ~ V O U E ( ~ - E C O S ~ ) ~  

Do, = D,, = - 
4 2 0 ~  ( 1  +:e2) 

( 9 . 8 ~ )  
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Angle 0 around axle 

FIGURE 7. Graphs of the (laminar) relative angular speed VJaS2 for different values of 
fractional offset E between the centres of the rotating axle and the stationary shaft. 

E = 0.75 

E = 0.25 

the 

- - _ _ - - .  
FIQURE 8. Dispersion ellipses showing how the (laminar) rate of shear dispersion is a function 

of direction, and varies with position 0 around a journal bearing. 

We note that in the concentric case E = 0 the principal directions are directed along 
and around the axle, even though the flow is helical. Figure 8 shows the relative sizes 
and orientations of the dispersion ellipses a t  the angular positions 6 = 0, in, IT for 
G = 1 1 B with 

Qa = V.  (9.9) 4 ,29  4 

The dominant feature is the exceedingly weak longitudinal dispersion a t  6 = 0 where 
the gap is narrowest. Indeed, for E = 0.75 the longitudinal dispersion is imperceptible. 

The components of D, all have extrema a t  the widest ( + ) and narrowest ( - ) gap 
positions : 

(9.10a) 

(9.10 b)  

(9.10c) 

For E = 0.75 the longitudinal dispersion D,, varies by the extremely large factor 76 
between the narrowest and widest gaps, while the transverse dispersion D,, varies by 
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the more modest factor 55. As the gap closes (i.e. as 1 --E tends to zero), all the shear 
dispersion components tend to  zero. However, the rates of decay (1 - -E)~, (1 - E ) ~ ,  

(1 -8)' are quite distinct. For narrow gaps D,, dominates if Qa exceeds a( 1-8)' W.  So, 
rotation of the axle becomes particularly important if one seeks to avoid possible 
accumulation of debris where the gap is small. 

There is quadratic dependence of Do, upon the angular velocity Q. So doubling Q 
would double the lateral width of the dispersion ellipses as shown in figure 8, and 
would halve the time for there to be significant mixing around the axle and for the 
dispersion process to evolve towards its next stage of one-dimensional longitudinal 
dispersion (Tayior 1953). 

10. Turbulent flow around and along a journal bearing 
I n  the turbulent (logarithmic velocity profile) case we have the major additional 

difficulty that the turbulence level, as typified by u*(O), is itself a function of the 
unknown velocity field. The stresses (6.10~2, b) a t  the two surfaces are given by 

(1 - a(+) - a(-)) 4-) = S'-'ku*( v, - aQ( 1 - a(+)), W,), 

(1 -a(+) -a(-)) &+) = &+'kU * (J7 s -6 ,(-) a Q, WS)> 

(10.1 a) 

(10.1 b)  

where a(+) = -1/ln<(+), * a(+) = -1 /1 n E; ( ). (lO.lc, a )  

So, the definition (6.11) for u* becomes 

(1 - a(+) -a(-))* u: = k2u2,(a'-'*( v, - aQ( 1 - #+' ) )2  

+ a(+)'( vs -6(-'aQ)2) + (ku* W,)' {a(+)' +a(-)'}. (10.2) 

Before we can solve this equation for u,(O) we need to determine 7, and u* W,. To 
avoid undue complication, we shall regard the fractional roughness heights <!+-), <$!) 

as being constants. 
For constant-density flows (with the hydrostatic pressure subtracted), the 

momentum equation (6 .12b)  yields the two component equations 

(10.3b) 

If the velocities are independent of z,  then we can infer that u., W, can be represented 
as 

where F is the mean velocity along the axle. 

As in the laminar case there is a constant circulation 

(10.4) 

(10.5) 
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The periodicity of llpll with respect to 8 enables us to obtain the solution 

(10.6) 

In particular, when there is no offset (e = 0) and the inner and outer fractional 
roughness heights are equal (a(-) = a(+)), the bulk velocity V, around the axle is half 
the velocity alR of the axle. 

The solutions (10.4), (10.6) for u* W, and V, in terms of u,(8) allow us to regard 
(10.2) as being a quartic for u,(B): 

(10.7) u; = u; a w A ( e )  + wB(e)2. 

The coefficients A(B), B(0) are functionals of u*(8) : 

B 
k 

The unique positive solution for u,(8) is 

(1 - a(+) - #-)) - = (1 - E cos 0) {P2 + d(+)z}i 2~ ui'( 1 - E cos ~ 9 ) ~  dB. (10.8b) 

u* = {$'Q2A + [ V2B2 + +4Q4A2]i}~. (10.9) 

For the concentric case E = 0 the friction velocity u* is independent of the angular 
8: 

(1 - #+) - p ) 2  u". 
k2 

So, the turbulence is dependent both upon the angular velocity a 0  of the axle and 
upon the bulk flow velocity 

A robust iterative computational scheme to solve for u*(O) is to begin with a 
starting function u$"(B), such as the concentric solution (10.10). At the mth stage the 
approximation uL")(e) is used in (10.8a, b)  to evaluate the functionals A(")(B), 
B(")(B). The corresponding solution of (10.9) is denoted ukm+l)(B). The iterations 
continue until the fractional difference between successive iterates u$'"), uLm+l) is 
acceptably small. Figure 9 shows the relative change in u*(e) for several values of E 

in the case 
(lO.lla, b, c )  

The uniformity of u* around the axle can be attributed to the compensating effects 
of decreasing circulation velocity V, where the longitudinal velocity W, increases. 

Once a,(@) is known, we can use (10.4), (10.6) to evaluate the axial and 
circumferential velocities W, and V, (see figures 10, 11). It is noteworthy that for the 
axial velocity W,, the changes with E are less marked than in the laminar case. 

along the axle. 

alR = w, ti-) = .$+) = 0.005, a(-) = a(+) = 0.189. 
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0 0.5n I .on 1.5n 2.0n 

Angle 0 around axle 

FIGURE 9. Graph of the friction velocity u* (relative to that in the concentric case E = 0) as a 
function of position 0 around a journal bearing. 

1 r 

FIGURE 

m .- 

I ' ~ ' " ' ' " l ' ' ~ ~  
0 0 . 5 ~  1 .on 1.5n 2.0n 

Angle 0 around axle 

10. Graph of the (turbulent) relative axial velocity W,/W for different 
fractional offset E between the centres of the axle and the shaft. 

0 0 . 5 ~  1 .on 1.5n 2.0n 

Angle 0 around axle 

10. Graph of the (turbulent) relative axial velocity W,/W for different 
fractional offset E between the centres of the axle and the shaft. 

values of the 

1.0--. 

4 - - . _ . _ _ _ _ _ . - - -  0.75 

I " " I " " I " "  

0 0.5n 1 .on 1.5n 2.0n 

FIGURE 1 1 .  Graph of the (turbulent) relative angular speed VJaQ for different values of the 
fractional offaet E between the centres of the rotating axle and the stationary shaft. 

Angle 0 around axle 
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C: = 0.25 

FIQURE 12. Dispersion ellipses showing how the (turbulent) rate of shear dispersion is a 
function of direction, and varies with position 8 around a journal bearing. 

Next, from (lO.la, 6 )  we can evaluate the stresses T(+ ,  T(+)  on the inner and outer 
surfaces. The formulae (7.5) or (7.6) permit us to evaluate the shear dispersion tensor 
D,. For the concentric case 8 = 0, and with equal values of the roughness heights 

(10.12a, b)  ti-) = E'," = ,g *, 6, = - l/ln E* 
we have the explicit formulae 

H6 
DO, = 2 (0.404 11 + 2 - in2) 

k2 {$za"O"2P}+' 
( 10.13 a)  

Do, = D,, = 0, (10.13b) 

D,, = %(0.40411-2+frr2) 2 P  
{+W + 2 P } t  ' 

(10.13~) 

with lv = W/(1-26*). (10.13d) 

So, as in the laminar case, the principal directions are along and around the axle even 
though the flow is helical. The factor of 15.5 disparity in the numerical coefficients 
makes the two-dimensional dispersion process sensitive to the rotation velocity a n  
of the axle. For example, 

D, = D,, when aO = 0.508w, (10.14) 

even though the velocity around the axle is only a quarter of the longitudinal 
velocity. 

The corresponding isotropic model for the turbulent diffusivity K is 

KO, = K,, = 0 . 1 5 k H 6 , { ~ 8 2 + 2 ~ } ~ .  (10.15) 

Fischer (1978, 5.1.1.2) discusses the evidence for the empirical factor 0.15. If we take 
the von Karman constant to have the value k = 0.4, then 

D, 2 KoH if aO 2 0.2226v, (10.16) 

D,, 2 K,, if 4.05W 2 aO. (10.17) 

So, when the velocity around the axle exceeds about one-ninth of the longitudinal 
velocity, the shear dispersion D, in the axial direction exceeds the turbulent 
diffusivity KHo, However, when the flow is principally around the axle, i t  requires a 
longitudinal velocity greater than half the velocity around the axle for shear 
dispersion D,, to exceed K,,. It is the quadratic dependence of the shear dispersion 
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coefficients D,,, D ,  upon w and aQ that makes the two-dimensional dispersion 
process change in character over such a modest range of the ratio aQ/W. 

Figure 12 shows the relative sizes and orientations of the dispersion ellipses for 
three values of E and three angular positions 8 in the case (10.11 a, b,  c ) .  The changes 
with E are less marked than in the laminar case. There is, however, a clear transition 
between transverse shear dispersion at  the narrowest part (8 = 0 )  and isotropic shear 
dispersion at  the widest part (8 = x). So, as in the laminar case, rotation of the axle 
is particularly important when the gap is narrow if accumulation of debris is to be 
avoided. 

I wish to express my thanks to Simon Bittleston, Peter Long and Ian Walton of 
Schlumberge,r Cambridge Research, to whom miscible Newtonian fluids are but an 
elementary special case. This work was financed by The Royal Society. 
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